userman

userman

COLLABORATORS

TITLE :
userman
ACTION NAME DATE SIGNATURE
WRITTEN BY April 14, 2022
‘ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

userman

Contents

1 userman 1
1.1 userman.guide oL e e e e 1
1.2 userman.guide/COpying i e e e e 1
1.3 uwserman.guide/Installation L 2
1.4 userman.guide/Getting Started L. e e e e 2
1.5 userman.guide/Temporary table e 2
1.6 userman.guide/Tutorial e e 3
1.7 userman.guide/Introduction e e e e e e e e e e e 3
1.8 userman.guide/Creating L e e e e e e e e e 3
1.9 userman.guide/Adding and Changing e 4
1.10 userman.guide/Finishing Up e 5
1.11 userman.guide/Command Shell e e 6
1.12 userman.guide/History Substitution L e 6
1.13 userman.guide/Alias Substitution L. e e 6
1.14 userman.guide/Variable Substitution oL e 7
1.15 userman.guide/Commands L. e e e e e e e 7
1.16 userman.guide/EDIT COMMAND e 7
1.17 uwserman.guide/EXIT o o e e 7
1.18 userman.guide/HISTORY e e e e e 8
1.19 userman.guide/SET L e 8
1.20 userman.guide/SYSTEM 8
1.21 userman.guide/VERSION o o e 9
1.22 userman.guide/Server Mode e e 9
1.23 userman.guide/ExecSQL e 9
1.24 userman.guide/ShutdownSQL L 9
1.25 userman.guide/GetLastCode e e e e 10
1.26 userman.guide/GetLastErrMsg L. e e e e 10

userman 1/10

Chapter 1

userman

1.1 userman.guide

SQLdb

* kK x Kk

This file documents the March, 1993 alpha version of SQLdb.

Copying
SQLdb evaluation version is freely
redistributable

Installation

Getting Started
Starting SQLdb

Tutorial

Command Shell
command—-line shell

Server Mode

1.2 userman.guide/Copying

Copying

* ok Kk Kk ok kK
Copyright 1990-1993 Kyle Saunders

Permission is granted to freely distribute this file in its entirety as
part of the SQLdb evaluation package.

userman

2/10

1.3 userman.guide/Installation

Installation
* Kk ok ok Kk k ok kK okkok

Copy the main program sqldb/db to a directory in your executable path.
Add the assignment SQLDB: to your user-startup and have it point to a
central location for your tables.

SQLdb checks your stack on startup to see that it is at least 70000.
This amount of stack is good for two levels of subquery’s. Add 25000
or so for each level of subquery beyond that that you intend to use.

1.4 userman.guide/Getting Started

Getting Started
kAhkkhkAhkkkkhkkkkkKkk*k

Command-line options to SQLdb:

Option Arguments Default Meaning

-t 'd’ or ‘r’ ‘r’ Temporary table storage
—-S none NA Server mode

See
Temporary table

See
Server Mode

1.5 userman.guide/Temporary table

Temporary table

Temporary tables are created whenever you give SQL a select query to
perform.

The ‘r’ argument specifies that temporary tables are to be stored in
main memory.

The ‘d’ argument specifies that temporary table are to be stored in the
current directory from which SQLdb was started from.

After the query is finished processing, as you might expect, the
temporary tables are removed.

userman

3/10

1.6 userman.guide/Tutorial

Tutorial
*k kKKK kK

Introduction
Creating
Adding and Changing

Finishing Up

1.7 userman.guide/Introduction

Introduction

The objective of this tutorial is to introduce you to enough SQL
commands and concepts to get you started. For a thorough treatment, I
would recommend one of the many books on SQL. One such book is _Using
SQL_ by James R. Groff & Paul N. Weinberg, published by McGraw-Hill,
ISBN 0-07-881524-X.

The primary function of the SQL language is to support the definition,
manipulation, and control of data in a relational database. A
relational database is collection of tables. A table is an unordered
collection of rows. The terms "file", "record", and "field" in a
flat-file database correspond to the relational terms "table", "row",
and "column".

In all examples in this tutorial, ‘dbcsh>’ is the command-shell prompt
and should not be typed.

1.8 userman.guide/Creating

Creating

The first thing you need to do is create a database. This is
accomplished with the ‘CREATE DATABASE’ command:

dbcsh> create database tutorial;
Now we are ready to create a table to hold our data. The data will be

the venerable address book. We will use the ‘CREATE TABLE’ command
illustrated below:

userman

4/10

dbcsh> create table address_book (person_id integer,
first_name char(15),
last_name char (40),
address char (50),
city char(20),
state char (2),
zip char(9),

phone char (11)

)

As you can see, ‘address_book’ 1is the name of the table. To specify the
columns of the table you supply a comma separated list of definitions
within parentheses. Each definition consists of the column name and

its data type. So ‘last_name’ is a character column with a size of 40
characters.

For efficient access to specific data, you will want to create an index
on certain columns of your table. Indexes entries must be unique
values. So, 1if you create an index on ‘first_name’ and ‘last_name’,
you cannot have two people with the same first and last names in this
table.

Most times you need, for example, the phone number of a certain person.
So you would look them up by their name to find the number. So we
will create an index on those columns with the ‘CREATE INDEX’ command:

dbcsh> create index name_idx on address_book (last_name, first_name);

A note to non-registered users: You can create indexes and they will be
updated properly. However, they will not be used in query optimization
to speed up your queries.

1.9 userman.guide/Adding and Changing

Adding and Changing

Now that you have your table, you need to put your data into it. To do
this you use the ‘INSERT INTO’ command:

dbcsh> insert into address_book values (1,’Kyle’,’Saunders’,
74418 N. 4th. Road’,
"Arlington’,’VA’,
122203’ ,75551212"
)i
dbcsh> insert into address_book values (2,’John’,’Smith’,
71234 Outer Join Way’,
"Relational’,’NY’,
712345’ ,75557777"
)i

We should make sure that the rows we just added are really in the
table. The way all rows are retrieved is through the ‘SELECT’
statement:

userman

5/10

dbcsh> select » from address_book;

PERSON_ID FIRST_NAME LAST_NAME ADDRESS CITY STATE
PHONE
1 Kyle Saunders 4418 N. 4th. Road Arlington VA
22203 5551212
2 John Smith 1234 Outer Join Way Relational NY

12345 5557777
Say you forgot where to send the registration fee, so you needed to
look up my address. You would use the ‘SELECT’ command with a ‘WHERE’

clause:

dbcsh> select » from address_book

where first_name = ’'Kyle’
and last_name = ’Saunders’;
PERSON_ID FIRST_NAME LAST_NAME ADDRESS CITY STATE
PHONE
1 Kyle Saunders 4418 N. 4th. Road Arlington VA

22203 5551212
What if you just realized that ‘John Smith’’s phone number is wrong?
Then you need to update the data in the row. So you would use the

‘UPDATE’ statement:

dbcsh> update address_book set phone=’"5559876"

where first_name = ’John’
and last_name = ’'Smith’;
Now you decide that you no longer want to talk to ‘John Smith’, so you

want to remove him from the table. You would use the ‘DELETE FROM’
command:

dbcsh> delete from address_book

where first_name = ’John’
and last_name = ’'Smith’;

1.10 userman.guide/Finishing Up

Finishing Up

To close the database, you simply use the ‘CLOSE DATABASE’ command:
dbcsh> close database;
To leave the program, you use the command-shell ‘EXIT’ command:

dbcsh> exit;

ZIP

ZIP

userman 6/10

1.11 userman.guide/Command Shell

Command Shell

* Kk Kk Kk kkkkkkkkk
The command shell is a line oriented user interface. Commands are
typed and the results are displayed on the screen. The commands shell

is similar in operation to the Unix csh(l) program.

Commands may span physical lines. Commands xMUST* be terminated with a
semi-colon Y;'.

Upon startup, the command shell will attempt to execute commands in the

file ‘.dbcshrc’. If this file does not exist in the current directory,
the command shell will give an error message saying so, and will
continue.

The following variables have special meaning to the command shell:

Name Default Meaning

EDITOR "vi’ Editor to be used with EDIT COMMAND
PROMPT "dbcsh>’ Command shell prompt string
HISTORY 25 Number of commands in history buffer

History Substitution
Alias Substitution
Variable Substitution

Commands

1.12 userman.guide/History Substitution

History Substitution

Not implemented.

1.13 userman.guide/Alias Substitution

userman 7/10

Alias Substitution

Not implemented.

1.14 userman.guide/Variable Substitution

Variable Substitution

Not implemented.

1.15 userman.guide/Commands

Commands

EDIT COMMAND
EXIT

HISTORY

SET

SYSTEM

VERSION

1.16 userman.guide/EDIT COMMAND

EDIT COMMAND

‘EDIT COMMAND’ HISTORY-NUMBER

The edit command command lets you edit the specified command using the
editor specified by the EDITOR variable.

1.17 userman.guide/EXIT

userman 8/10

EXIT

‘EXIT'

The exit command will exit you from the command shell. All open tables
will be closed for you when you exit.

If you have an open cursor, you will receive an error message and the
program will not exit.

1.18 userman.guide/HISTORY

HISTORY

‘HISTORY’

The history command displays a list of the history buffer. Each entry
consists of the history number and the command text.

1.19 userman.guide/SET

SET

‘SET’ [VARIABLE-NAME = VARIABLE-VALUE]
The set command lets you store values in command shell variables that

can be used later. If the arguments to set are omitted, a listing of
all variables and values is produced.

1.20 userman.guide/SYSTEM

SYSTEM

YSYSTEM’ SYSTEM-COMMAND

The system command allow you to execute a system command, such as ‘dir’
or ‘ls’, without having to leave SQLdb.

userman 9/10

1.21 userman.guide/VERSION

VERSION

‘VERSION'’

The version command displays the current version and any other
pertinent information.

1.22 userman.guide/Server Mode

Server mode
* Kk Kk Kk Kk kkhkkhk ok kK

When started up in Server Mode, SQLdb will open up an ARexx port called
‘SQLserver’ and await commands from the port.

ExecSQL
ShutdownSQL
GetLastCode

GetLastErrMsg

1.23 userman.guide/ExecSQL

ExecSQL

VI YExecSQLM Y7 Y/ SQL-COMMAND-STRING; ‘'

‘ExecSQL’ will send the given command to the interpreter to be executed.
If the command is a fetch from a cursor, the result variable will
contain the fetched row.

1.24 userman.guide/ShutdownSQL

ShutdownSQL

VY ShutdownSQL! M

userman 10/10

ShutdownSQL will tell SQLdb to close the ARexx port and quit. The
command will fail if there are any open tables or cursors.

1.25 userman.guide/GetLastCode

GetLastCode

VP 'GetLastCode’ Y/

Will put the result code from the last command into the result variable.

1.26 userman.guide/GetLastErrMsg

GetLastErrMsg

VI YGetLastErrMsg’ Y’

Will put the error message from the last command into the result
variable.

	userman
	userman.guide
	userman.guide/Copying
	userman.guide/Installation
	userman.guide/Getting Started
	userman.guide/Temporary table
	userman.guide/Tutorial
	userman.guide/Introduction
	userman.guide/Creating
	userman.guide/Adding and Changing
	userman.guide/Finishing Up
	userman.guide/Command Shell
	userman.guide/History Substitution
	userman.guide/Alias Substitution
	userman.guide/Variable Substitution
	userman.guide/Commands
	userman.guide/EDIT COMMAND
	userman.guide/EXIT
	userman.guide/HISTORY
	userman.guide/SET
	userman.guide/SYSTEM
	userman.guide/VERSION
	userman.guide/Server Mode
	userman.guide/ExecSQL
	userman.guide/ShutdownSQL
	userman.guide/GetLastCode
	userman.guide/GetLastErrMsg

